

Welcome to Minisat’s documentation!

Contents:

	Overview
	Features

	Virtualization API

	Components
	Infrastructure

	Host

	Content

	Containers

	Installation

	Usage
	Creating Virtual Machines

	Running Docker containers

	Methods
	Make SSH connection

	Manage virtual machine

	Create kickstart file

	Manage Docker container

	Fetch data for dashboard

	Testcase of Minisat

	Contribute

Indices and tables

	Index

	Module Index

	Search Page

Overview

Minisat [https://github.com/miniSat/minisat] is an open source provisioning, managing and monitoring tool for virtual machines and Docker [https://www.docker.com/] containers, built on Django Web Framework [https://www.djangoproject.com/].

It offers a web interface for the user to interact with, which helps in easy manipulation of virtual machines and containers.

Features

	Current state (Running, Initializing, Shutdown) of virtual machines and containers.

	A dashboard to toggle the current state of virtual machines and containers.

	Virtual machine provisioning with a kickstart which makes the installation of the guest operating system uninteractive.

	Mapping the container port to the host port making the service available outside the container.

Virtualization API

	Minisat uses Libvirt API [https://libvirt.org/], which is a toolkit to manage virtualization hosts. The bindings for this API are available in C, Python, Perl, Java.

	Supports provisioning on many hypervisors like KVM, QEMU, Xen, Virtuozzo, VMWare ESX, LXC, BHyve and more.

	Minisat provisions virtual machines on a remote QEMU hypervisor.

	The facts of virtual machines are gathered using command line tools provided by Libvirt API.

Components

Everything which is required to provision a virtual machine and Docker container are wrapped under components.
Read further for complete details.

Infrastructure

Infrastructure is a remote system which uses libvirt API and QEMU hypervisor installed.

Compute Resource

Compute Resource is the very first step in provisioning virtual machines and running Docker containers.

	Create New

Initially, add compute resource which includes following parameters

	Compute resource Name.

	IP Address of remote machine.

	The root password of the remote machine.

Note

All the above details are very much essential to set up a compute resource.

	View Existing

Once a compute resource is added, it is enlisted under View Existing section.

Compute Resource has various validations such as

	A unique name should be given to each compute resource.

	IP address should be valid, reachable and sshd service on compute resource should be running.

	Root password should be entered correctly.

Profiles

Profile allows user to set various essential parameters to create a virtual machine. A profile holds values for RAM, disk space and number of virtual CPUs.

	Create New

The following parameters are asked to add a profile

	Profile Name

	RAM (in MB)

	Virtual CPUs

	Disk Space (in GB)

	View Existing

Previously created profiles are visible under this section. Same profile can be used multiple times.

Note

Use appropiate profile name which will give the correct idea about all the other details included with it.

Host

Minisat is host-based virtualization in which one can have access and control over virtual machine from single server.

Operating System

Operating System is the most important program which runs on computer. Any distribution of Linux can be used as guest operating system for the virtual machine.
Operating system url from mirrors of Fedora [https://admin.fedoraproject.org/mirrormanager/], CentOS [https://www.centos.org/download/mirrors/] can be added.
Else, use a tool called rsync to fetch the operating system tree, host these files on a local HTTP server and provide the local url in location field. The latter method will be more reliable and quicker to provision virtual machines.

	Create new

Fill the two fields

	Operating System Name

Name of the operating system which will give the exact idea of the guest operating system.

	Location

Provide the location from where the server can fetch the operating system tree.

	Already Existing

All existing operating systems are enlisted under this section.

Create Host

To provision a virtual machine the following parameters need to filled, some are optional though

	Name

	Compute Resource

	Profile

	Operating System

	Activation Name

	Host Group

	Root Password

Except Name and Root Password user have to select other details from drop down as they are created earlier.

If you Have already created Host Group then you have to only enter

	Name

	Host Group

	Root Password

All the remaining fields are filled according to the selected host group.

Content

Product

While provisioning a virtual machine, packages can be added to a virtual machine. A single repository is identified under the term Product.

	Create New

Consists of two fields

	
	Product Name

	
	The repository will be recognized with the product name instead of the repository URL.

	Mapping a repository URL to a name, makes identifying a repository URL with the help of product name easy.

	
	Product URL

	
	The location from where the repository for a package can be added.

Note

A single product name will hold only one URL of a repository not more than that.

	View Existing

All existing products are enlisted here along with their repository URL.

View

A single view consists of multiple products along with their corresponding repository URLs.

	Create New

Consists of

	
	View Name

	
	Multiple products will be recognized with a single name, View Name.

	If a view is selected, all the underlying products consisted in that view are added.

	
	Select Products

	
	To create a view, one or more products can be selected.

	The view will now consist of the selected products.

	View Existing

All existing view are enlisted here along with the included products and their corresponding repository URLs.

Activation Key

A single activation key consists of multiple views, and each of these views will consist of multiple products.
Activation Key, View, Product exhibit a hierarchy, Product being at the top, followed by View, and Activation Key being at the bottom.
The hierarchical structure allows the server to inherit views from activation key and products from view.

Create New

	Consists of

	
	Activation Name

	
	Multiple views are bundled inside a single activation key along with the products that they consist of.

	If an activation key is selected, all the underlying views along with products consisted in that view are added.

	
	Select View

	
	To create an activation key, one or more views can be selected.

	The key will now consist of the selected views.

	View Existing

All existing activation keys are enlisted here along with the multiple views and products that they consist of.

Containers

Containerization is a solution to reliable sofware delivery. They offer better consistency between testing environments and production environment.
Deployment of application with containers is perfect for microservices [http://microservices.io/] approach.

For now, Minisat can run Docker containers only. Support for other
kind of containers like LXC [https://linuxcontainers.org/] , CoreOS’s rkt [https://coreos.com/rkt/] will soon be added.

New Container

	Docker image name and tag name is to be known before running it on any compute resource.

	Container is assigned a name so as to identify it on the dashboard.

	Host port and container port are mapped to each other which makes services running inside container accessible from outside.

	If image is not available on the selected compute resource, then it is pulled from Docker registry and then run accordingly.

Local Images

	Docker images available on remote compute resources are displayed with details such as Image Name & Tag, Image ID, Created, Size.

	Any new image found on any compute resource will be enlisted here.

Installation

System Requirements

	64-bit Architecture

	A minimum of 250GB storage and 4GB memory

	Developed and tested on Fedora 27

Prerequisites

	All system should have Libvirt API installed for virtual machine provisioning.

dnf install qemu-kvm qemu-img virt-manager libvirt libvirt-python libvirt-client virt-install -y

	All compute resources should have Docker installed for running Docker containers. To install Docker on Fedora follow [https://docs.docker.com/install/linux/docker-ce/fedora/#install-using-the-repository]

	Server should have Docker machine installed.

curl -L https://github.com/docker/machine/releases/download/v0.13.0/docker-machine-`uname -s`-`uname -m` >/tmp/docker-machine && sudo install /tmp/docker-machine /usr/local/bin/docker-machine

	Server should have SSH public key or it can be generated using SSH keygen.

ssh-keygen -t rsa -f /root/.ssh/id_rsa -q -P ""

Installation

From Docker

To containerize Minisat, first clone the Github Minisat repository using and go to directory Minisat

git clone https://github.com/miniSat/minisat.git
cd Minisat

Build docker image using

docker build -t minisat:latest .

After building the image now run the image using

docker container run -it -p 8000:8000 minisat:latest 0.0.0.0:8000

Head to http://localhost:8000 for Minisat

From Source code

Minisat uses Django web framework which can be installed in Python 3 virtual environment. To create Python 3 virtual environment

python3 -m venv <environment_name>

After that we need to activate the virtual environment by executing

source <environment_name>/bin/activate

Now clone the Github Minisat repository from

git clone https://github.com/miniSat/minisat.git

Minisat requires some Python modules like Django (version 2.0). We can install them by executing

pip install -r requirements.txt

Django ORM [https://docs.djangoproject.com/en/2.0/topics/db/] is used to create database.

python manage.py makemigrations

Above command will create a Python script which will contain all SQL queries that we need to create the schema of database. The migration files are stored at .../satellite/migrations/.

python manage.py migrate

It will create a database and execute the SQL queries in Python script. Minisat, uses SQLite [https://www.sqlite.org/index.html] database to store values.

Now our environment is ready to run Minisat server. To start server

python manage.py runserver

By default, Django server is running at http://localhost:8000.

If you encounter below error

Error: That port is already in use.

Try changing the port number while running the server

python manage.py runserver <port_number>

Usage

Creating Virtual Machines

Follow the steps to provision a virtual machine.

Step 1

First create compute resource by clicking on Infrastructure -> Compute Resource.

	Fill all the details

	Make sure there is no repetition of compute name, compute resource is reachable by Minisat server and root password should be correct.

Step 2

Once done with compute resource move to profiles.

Click on Infrastructure -> Profile

	Name the Profile, fill the fields of RAM, virtual CPUs and Disk Space.

	Name should not get repeated.

Click Submit Profile gets added to database and is enlisted in View Existing Section.

Step 3

Now, add Packages for the virtual machine.

	Click on Content -> Product

Enter the name of Product and URL from where it should fetch the package repository.

	Click on Content -> View

Enter the name for View and select the product from the list avialable. Select one or more products to encapsulate them into single View.

	Click on Content -> Activation key

Here enter the name for activation key and select one or more View as per requirement.

Note

Adding packages is optional. If required then only follow Step 3 else skip it.

Step 4

The next thing that comes into picture is Host Group.
To make use of the same compute resources, profiles, operating systems and activation keys frequently, they can be bundled together under a single unit called Host Group.

Click Host Group -> Host Group

	Name the Host Group.

	Select Compute Resource, Profile, Operating System and Activation key from their respective drop down options.

Once a Host Group is created, a virtual machine is provisioned with less efforts as selecting a host group populates the other
parameters necessary to provision a virtual machine.

Note

Host Group are advantageous when multiple virtual machines are to provisioned with little or no changes in their specifications.

Step 5

This is the final step of provisioning a virtual machine on remote machine.

Click Host -> Create Host

	Name the virtual machine so as to identify it on the dashboard.

	Selecting Host Group will populate the fields such as compute, profile, operating system and activation key according to the values the Host Group consists of.

Note

Choosing host group and activation key is optional.

	At the end provide root password for the virtual machine.

Finally, just hit the Create Instance button and virtual machine deployment starts at background.

Running Docker containers

Docker containers are created either from existing local images or by pulling images from Docker registry and then running them.

Step 1

First create compute resource.

Click on Infrastructure -> Compute Resource

	Fill all the details

	Make sure there is no current existance of name and IP address in database.

	Also see to it that compute resource is reachable to Minisat server and root password is correct.

	As there is validation for the above.

Note

If a compute for virtual machine is added no need to add it again, same compute can be used for containers also.

Step 2

The previous step will now allow the server to perform SSH on remote Docker server and gather container related facts.

To deploy a Docker container on a compute resource

	Enter name for container

	Enter the Docker image and tag name

	Provide the host port and container port

	Select compute resource

	To run containers in background select the checkbox provided there.

Step 3

Finally hit Run to run image.

Check running containers on dashboard under Docker containers tab.

Methods

Make SSH connection

This module is to make connection with newly added compute resources

	
satellite.modules.ssh_connect.copy_ssh_id(ip_address, password)

	Copy SSH key with remote system

	Parameters

	
	ip_address – IP address of remote system (Compute resource)

	password – Root password of remote system

	Returns

	True

	
satellite.modules.ssh_connect.make_connection(ip_address, password)

	Check the compute is reachable and password is correct or not

	Parameters

	
	ip_address – IP address of remote system (Compute resource)

	password – Root password of remote system

	Returns

	Calls the copy_ssh_id(ip_address, password) to copy SSH key else error

Manage virtual machine

This module is to manage virtual machines in Minisat

	
satellite.modules.vm_manage.change_repo(compute_ip, vm_ip, repo_id, repo_flag, vm_name)

	Change the repo status

	Parameters

	
	compute_ip – IP address of compute on which virtual machine is running

	vm_ip – IP address of virtual machine

	repo_id – repo ID

	repo_flag – flag of repo (enable or disable)

	vm_name – Name of virtual machine

	Returns

	success or failed

	
satellite.modules.vm_manage.filter_repo(repo_info)

	Filter the repos

Remove all unnecessary data from repos

	Parameters

	repo_info – Raw repo data

	Returns repo_info

	Cleaned repo data

	
satellite.modules.vm_manage.get_memory(compute_ip, vm_name, vm_ip)

	Find memory consumption of virtual machine

	Parameters

	
	compute_ip – Compute IP on which virtual machine is running

	vm_name – Name of virtual machine

	vm_ip – IP address of virtual machine

	Returns total_mem

	Total memory of virtual machine

	Returns free_mem

	Free memory of virtual machine

	
satellite.modules.vm_manage.get_packages(compute_ip, vm_ip, root_passwd)

	Get packages installed in virtual machine

	Parameters

	
	compute_ip – IP address of compute on which virtual machine is running

	vm_ip – IP address of virtual machine

	root_passwd – Root password of virtual machine

	Returns package_info

	List of all packages in virtual machine

	
satellite.modules.vm_manage.get_repo(activation_name)

	Get repo list included in Activation name

	Parameters

	activation_name – Name of activation

	Returns repo

	Dictionary of repo name and repo URL included in that activation

	
satellite.modules.vm_manage.get_status(compute_name, compute_ip, vm_name)

	Get status of virtual machine

	Parameters

	
	compute_name – Name of compute on which virtual machine is running

	compute_ip – Compute IP on which virtual machine is running

	vm_name – Name of virtual machine

	Returns

	Running or Initializing

	
satellite.modules.vm_manage.get_vm_repo(compute_ip, vm_ip, vm_name)

	Get virtual machine repo

Find repo added in virtual machine and its status whether its enable or disable

	Parameters

	
	compute_ip – IP address of compute on which virual machine is running

	vm_ip – IP address of virtual machine

	vm_name – Name of virtual machine

	Returns repo_info

	Contain of list of enabled and disabled repo

	
satellite.modules.vm_manage.isOnline(host)

	Check whether host is online or offline

	Parameters

	host – IP of remote system

	Returns

	True if online else False

	
satellite.modules.vm_manage.virsh_delete_vm(vm_name, com_ip)

	Delete the virtual machine on remote system

	Parameters

	
	vm_name – Name of virtual machine

	com_ip – Compute IP on which virtual machine is running

	Returns

	delete_vm_flag

	
satellite.modules.vm_manage.virsh_pause_vm(vm_name, com_ip)

	Shutdown the virtual machine on remote system
:param vm_name: Name of virtual machine
:param com_ip: Compute IP on which virtual machine is running

	Returns

	shut_vm_flag

	
satellite.modules.vm_manage.virsh_start_vm(vm_name, com_ip)

	Starts the virtual machine on remote system
:param vm_name: Name of virtual machine
:param com_ip: Compute IP on which virtual machine is running

	Returns

	start_vm_flag

	
satellite.modules.vm_manage.vm_create(compute_ip, name, ram, cpus, disk_size, location_url, kickstart_loc)

	Create virtual machine on remote system

	Parameters

	
	compute_ip – Remote system IP address

	name – Name of virtual machine

	ram – RAM size for virtual machine

	cpus – Number of virtual CPUS for virtual machine

	disk_size – Disk size for virtual machine

	location_url – URL location of OS

	kickstart_loc – location of kickstart

	Returns

	Boolean, True if success or False

	
satellite.modules.vm_manage.vm_details(compute_name, compute_ip, vm_id)

	Find details of virtual machine

In this function virtual machine details like ID, name, state(Running or shut),
virtual CPUs, Total memory allocated, Free memory, virtual machine IP address, virtual machine MAC address,
Compute name (on which it is provisioned).

	Parameters

	
	compute_name – Name of compute on which virtual machine is running

	compute_ip – IP address of compute on which virtual machine is running

	vm_id – UUID of virtual machine

	Returns details

	Dictionary of ID, name, state(Running or shut), virtual CPUS, Total memory allocated, Free memory, virtual machine IP address, virtual machine MAC address, Compute name

	
satellite.modules.vm_manage.vm_ip(vm_name, compute_ip)

	Find the IP address of virtual machine

	Parameters

	
	vm_name – Name of virtual machine

	compute_ip – Compute IP on which virtual machine is running

	Returns vm_ipaddress

	contain IP address of virtual machine

	
satellite.modules.vm_manage.vm_status(compute_ip, vm_name, vm_ip)

	Get status of virtual machine

	Parameters

	
	compute_ip – Compute IP on which virtual machine is running

	vm_name – Name of virtual machine

	vm_ip – IP address of virtual machine

	Returns

	Running or Initializing or Shutdown

Create kickstart file

This module generate the kickstart file for virtual machine

	
satellite.modules.kickstart.kick_gen(vm_name, passwd, location, repo)

	Generate kickstart file

	Parameters

	
	vm_name – Name of virtual machine

	passwd – Password of virtual machine

	location – Location of operating system

	repo – List of repo needed to add in virtual machine

	Returns

	location of kickstart file

Manage Docker container

This module is to manage Docker container in Minisat

	
satellite.modules.docker_manage.destroy_cont(cont_name, compute_name)

	Destroy a container

	Parameters

	
	cont_name – Name of container

	compute_name – Name of compute

	Returns

	Destroyed if success else 0

	
satellite.modules.docker_manage.get_docker_images(compute=[])

	Get Docker images available in all the compute resources

	Parameters

	compute – Name of compute resources

	Returns docker_dict

	Dictionary of docker images available

	
satellite.modules.docker_manage.make_connection(ip_address, name)

	Make Docker connection using docker-machine

	Parameters

	
	ip_address – IP address of remote machine

	name – Name of docker-machine connection

	Returns

	True if success or False

	
satellite.modules.docker_manage.run_cont(new_cont, stat)

	Run the container

	Parameters

	
	new_cont – Class of container details

	stat – Running status

	
satellite.modules.docker_manage.start_cont(cont_name, compute_name)

	Start a container

	Parameters

	
	cont_name – Name of container

	compute_name – Name of compute

	Returns

	Paused if success else 0

	
satellite.modules.docker_manage.stop_cont(cont_name, compute_name)

	Stop a container

	Parameters

	
	cont_name – Name of container

	compute_name – Name of compute

	Returns

	Running if success else 0

Fetch data for dashboard

dashboard_details fetch data from remote compute system and virtual machine to display on
dashboard

	
satellite.modules.dashboard_details.get_vms(ip_list=[])

	Get list of virtual machine and their details from remote compute resources

	Parameters

	ip_list – list of IP address of remote compute resources

	Returns final_dict

	Contain details of all the virtual machine on all compute

	
satellite.modules.dashboard_details.running_containers(compute=[])

	Get list of virtual machine and their details from remote compute resources

	Parameters

	compute – list of IP address of remote compute resources

	Returns data

	Contain details of all the container on all compute

Testcase of Minisat

This Module is for testing Minisat.
All testcase are tested on Travis-CI [https://travis-ci.org/miniSat/Minisat] and triggered when new pull request is opened.
Most of the tesing is done by Selenium and in headless mode.

	
satellite.test_minisat.test_operating_system()

	Test Operating System page
Some testcase are already designed with their expected output.
If testcase fails it will split error.

	
satellite.test_minisat.test_pep8()

	Testing PEP 8 standards.
Flake8 is use to check PEP 8.

Error E501 (line too long error), E122 (Continuation line missing indentation or outdented),
E722 (do not use bare except) are ignored.

	
satellite.test_minisat.test_product()

	Test product page
Some testcase are already designed with their expected output.
If testcase fails it will split error.

	
satellite.test_minisat.test_profile()

	Test Profile page
Some testcase are already designed with their expected output.
If testcase fails it will split error.

	
satellite.test_minisat.test_web_ui()

	Check Minisat is working properly by visiting all availabe pages.
It visits Dashboard, compute_resource, profile, create_host, operating_system,
new_container, local_images.

Contribute

Minisat is an open source project that’s licensed under the GNU General Public License version 3. All contributions gladly accepted as long as they follow our programming guidelines.

Setting up the development

To create a development environment follow steps given for Minisat installation [http://minisat.readthedocs.io/en/latest/installation.html].

Setting up test environment

Pytest [https://docs.pytest.org/en/latest/] is used for testing and Travis-ci [https://travis-ci.com/] for Continuous Integration.
Pull requests are tested against testcases by Travis-ci [https://travis-ci.org/miniSat/Minisat]. If your pull request didn’t pass our test cases, you can visit the test job that failed and view its console output.

It is possible for you to run these same tests locally. To setup a testing environment, you need to download Selenium [http://www.seleniumhq.org/] webdriver for Mozilla Firefox at mozilla geckodriver [https://github.com/mozilla/geckodriver/releases].

Extract the driver.

Export path

export PATH=$PATH/:/path/of/driver

It will set a path variable to the webdriver.

And run the test

pytest

To check whether your programming style matches our, use flake8

flake8 --ignore=E501,E122,E722 minisat satellite

Submit Patches

Patches to fix bugs are always appreciated. Before introducing a new feature, create an issue first. If you are going to work on a specific issue, make a note in the issue section so that everyone knows what you’re working on. Please try to create an issue which is specific for your patch details.
- Fork the project and Clone it

On GitHub, navigate to the Minisat repository [https://github.com/miniSat/minisat/]. In the top-right corner of the page, click Fork.

To clone repo

git clone https://github.com/<your-user-name>/minisat.git

	Create a feature/topic branch

git checkout -b <branchName>

	Make the changes required and commit the code

git add <modifiedFile(s)>
git commit -m "Fixes #<bug> - <message>"

	Push topic branch to your fork

git push origin <branchName>

	Create a pull request from <branchName> to testing branch.

To create pull request follow the link [https://help.github.com/articles/about-pull-requests/].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 satellite	

 	
 	
 satellite.modules.dashboard_details	

 	
 	
 satellite.modules.docker_manage	

 	
 	
 satellite.modules.kickstart	

 	
 	
 satellite.modules.ssh_connect	

 	
 	
 satellite.modules.vm_manage	

 	
 	
 satellite.test_minisat	

Index

 C
 | D
 | F
 | G
 | I
 | K
 | M
 | R
 | S
 | T
 | V

C

 	
 	change_repo() (in module satellite.modules.vm_manage)

 	
 	copy_ssh_id() (in module satellite.modules.ssh_connect)

D

 	
 	destroy_cont() (in module satellite.modules.docker_manage)

F

 	
 	filter_repo() (in module satellite.modules.vm_manage)

G

 	
 	get_docker_images() (in module satellite.modules.docker_manage)

 	get_memory() (in module satellite.modules.vm_manage)

 	get_packages() (in module satellite.modules.vm_manage)

 	
 	get_repo() (in module satellite.modules.vm_manage)

 	get_status() (in module satellite.modules.vm_manage)

 	get_vm_repo() (in module satellite.modules.vm_manage)

 	get_vms() (in module satellite.modules.dashboard_details)

I

 	
 	isOnline() (in module satellite.modules.vm_manage)

K

 	
 	kick_gen() (in module satellite.modules.kickstart)

M

 	
 	make_connection() (in module satellite.modules.docker_manage)

 	(in module satellite.modules.ssh_connect)

R

 	
 	run_cont() (in module satellite.modules.docker_manage)

 	
 	running_containers() (in module satellite.modules.dashboard_details)

S

 	
 	satellite.modules.dashboard_details (module)

 	satellite.modules.docker_manage (module)

 	satellite.modules.kickstart (module)

 	satellite.modules.ssh_connect (module)

 	
 	satellite.modules.vm_manage (module)

 	satellite.test_minisat (module)

 	start_cont() (in module satellite.modules.docker_manage)

 	stop_cont() (in module satellite.modules.docker_manage)

T

 	
 	test_operating_system() (in module satellite.test_minisat)

 	test_pep8() (in module satellite.test_minisat)

 	
 	test_product() (in module satellite.test_minisat)

 	test_profile() (in module satellite.test_minisat)

 	test_web_ui() (in module satellite.test_minisat)

V

 	
 	virsh_delete_vm() (in module satellite.modules.vm_manage)

 	virsh_pause_vm() (in module satellite.modules.vm_manage)

 	virsh_start_vm() (in module satellite.modules.vm_manage)

 	
 	vm_create() (in module satellite.modules.vm_manage)

 	vm_details() (in module satellite.modules.vm_manage)

 	vm_ip() (in module satellite.modules.vm_manage)

 	vm_status() (in module satellite.modules.vm_manage)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Minisat’s documentation!

 		
 Overview

 		
 Features

 		
 Virtualization API

 		
 Components

 		
 Infrastructure

 		
 Compute Resource

 		
 Profiles

 		
 Host

 		
 Operating System

 		
 Create Host

 		
 Content

 		
 Product

 		
 View

 		
 Activation Key

 		
 Containers

 		
 New Container

 		
 Local Images

 		
 Installation

 		
 Usage

 		
 Creating Virtual Machines

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Step 4

 		
 Step 5

 		
 Running Docker containers

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Methods

 		
 Make SSH connection

 		
 Manage virtual machine

 		
 Create kickstart file

 		
 Manage Docker container

 		
 Fetch data for dashboard

 		
 Testcase of Minisat

 		
 Contribute

_static/up-pressed.png

_static/up.png

